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Extreme Points of the Class of Discrete
Decreasing Failure Rate Life Distributions

by
Naftali A. Langberg, Rambn V. Ledn, James Lynch, and Frank Proschan

ABSTRACT

We show that the class of discrete decreasing failure rate (DFR)
life distributions is a convex class. We then obtain the extreme points

of this class. Finally we show how to represent any discrete DFR distri-

bution as a mixture of these extreme points.
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1. Introduction and Summary.

Although a great deal of research has been performed on the class of
DFR life distributions in the continuous case (see, e.g., Barlow and
Proschan, 1975, Chaps. 3 and 4), very little has been done in the discrete
case. Discrete DFR life distributions govern (a) in the grouped data
case, the number of pericds until failure of a device governed by a DFR
life distribution, (b) the number of seasons a TV show is run before
being cancelled. Thus discrete DFR life distributions are of great signi-
ficance in spite of their relative neglect in the reliability literature.

In Section 3 we show that the class of discrete DFR distributions is
a convex class and we identify each extreme point of the class. Roughly
speaking, the extreme points are the piecewise geometric distributions
supplemented by the distribution degenerate at the origin.

In Section 4 we show how to represent by constructive methods any
discrete DFR distribution as a mixture of extreme points of the class
of discrete DFR distributions.

Note that although the problem treated and the results obtained are
of the same type as those of Langberg, Leén, Lynch, and Proschan (1978)
(which obtains the extreme points of the class of DFR distributions in the
continuous case and shows that every such DFR distribution is a mixture
of the extreme points of this class), the mathematical methods used in the
two papers are completely different. Thus in the present paper, the
representation of a member of the discrete DFR class as a mixture of
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extreme points is obtained by constructive methods; the existence of a
representation for the continuous case treated in the referenced paper is
obtained by the use of Choquet's Theorem [see Phelps 1966, pp. 19-20].

Having obtained the extreme points of the class of discrete DFR

distributions, we plan to use this information to obtain bounds, inequalities,

o7 2 S

i and optimal values of convex functionals of discrete DFR distributions.
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2. Preliminaries.

A distribution F is a discrete life distribution if its support is

contained in the set {0, 1, ...}. Throughout, we denote the survival
function of a discrete life distribution F by il', (x) =1 - F(k - 1),
k=0,1, ... .

Definition 2.1. Let F be a discrete life distribution. Then F is

decreasing failure rate (DFR) if Fg(k +1) s 3}(k) 3§(k +2) fork=0,1, ...

We note that

Proposition 2.2. Let F be a discrete DFR lifc distribution. Then

(s) the support of F is the set {0, 1, ...}, or (b) the support of F is
the set {0}.
Let Fd be the discrete life distribution having support {0}. We denote
the failure rate of a discrete DFR life distribution F = Fd by
Pgk) - PF(k + 1)

rp(k) 3 , k=0, 1, ..., and denote the class of discrete
Pp(k)

DFR life distributions by GD.
We define two basic concepts to be used in the paper.

Definition 2.3. Let G be a class of distribution functions. Then

G is a convex class if F = oF, + Qa - e)F2 belongs to G whenever Fl and
F, belong to G and 0 is in [0, 1].

Definition 2.4. Let G be a convex class of distribution functions,

and let F be in G. Then F is an extreme point of G if there exist no

distribution functions F, and F_, in G and a real number @ in (0, 1) such

1 2
that F = OPl + (1 - O)Pz.

Throughout we define a product over an empty set of indices as 1, a

sum over an empty set of indices as zero, and a minimum over an empty set as =,

VPSS~ — .
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3. The Extreme Points of the DFR Class. ]

In this section we identify the extreme points of the class of
discrete DFR life distributions. {
We note that

I Proposition 3.1. A discrete DFR life distribution F = F, is DFR

iff rp(k) 2 rp(k +1) for k=0, 1, ... . :

Proposition 3.2. Let k be a nonnegative integer and let F = F d be a

T S e e i i

discrete DFR life distribution. Then rp(k) = rF(k + 1) iff ﬁg(k +1) =

abho

FF(k) 'P_F(k +2).

First we show that the class GD is convex. 1

PaebMgi S

Lemma 3.3. The class of discrete DFR life distributions is convex.

Proof. Let F = 6 Fl + (1 - o)rz, where Fl and Fz belong to Gb and 6

ey SLC NS S

: is in [0, 1]. We show that F is a discrete DFR life distribution. Let k
be in the set {0, 1, ...}. Then
) F,,(k) Fl,(k +2) = [0 Fpl(k) + (1 - o)FFZ(k)l i () Fpl(k +2)+ Q1 - o)i,,z(k +2)].

By algebraic simplification we obtain that

Po(k) Po(k + 2) 2[0/ Fpl(x)il,lck v 2) 4 (1-0)/ Fl,sz)i?pz(k . 2))°.

Snce (87 P, (KIP, (k + 2) + (1 - 0) / B, (WP, (k + D)]°
:'~ 1Py 2 B

2 [0 F',l(k e1) s (1 - o)‘i,z(k s 1) - Palk + 1),

the conclusion of the lemma follows. ||

To accomplish the objective of this section we need the following lemma:
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Lemma 3.4. Let F = 6 Pl + (1 - O)Fz, where l"1 # Fd and Fz ] Fd belong

to GD' and @ is in [0, 1]. Assume that for some nonnegative integer k,

AR v R R

rp(k) = rp(k + 1). Then rF(k +j) = T (k + j) = rp (k + j) for j = 0, 1.
1 2 ¥
Proof. In the proof of Lemma 3.3 we establish the following chain '

of inequalities:

Pok) Polk + 2) 2 (8 FFl(k)Fpl(x +2) + (1 -0)/ sz(k)'ﬁpz(k + 212

L T O R S SRR

;)
2 [o Fpl(k +1)+ (1 - e)FFZ(k + 1)]2 = Fp(k +1). 1

=

Since by the hypothesis of the present lemma and Proposition 3.2, the two

ST S R et S O
you

extreme values in the chain are equal, the following equalities hold: ]
(1) B (k+1) = P, (K)F, (k + 2) for j = 1, 2, and (i) Py (K) = '
FJ. Pj Pj F
A FF (k + 2) for j = 1, 2, and for some number A 2 1. Consequently the '
]

conclusion of the lemma follows. || :
Next we identify the extreme points of the class of discrete DFR

life distributions. Let GD,e = {F}u {F|F ¢ Gy 1> rp(0) = rp(1), and

rF(k) = rl,(k - 1), or rF(k) = rp(k +1), k=2, 3, ... .}. We prove the

following:
Theorem 3.5 Ga o is the class of all extreme points in the class of
’

discrete DFR life distributions.

Proof. First we show that all life distributions in G, , are
extreme points. Let F = orl + (1 - e)l'z, where Pl and Pz belong to GD,
F belongs to GD,.' and 6 is in (0, 1). To show that F is an extreme point

in Gb’ it suffices to prove that F, = F,. Clearly Fy is an extreme point.

Thus, to prove that F is an extreme point it suffices to consider two cases:
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(a) F = Fd' F1 = Fd’ and Fz = Fd' and (b) F=F,, F, = Pd' and F2 = F

di=

(a) Let us assume that F = Fd’ F1 2 Fd, and that P2 ® Fd. Since F
2

belongs to Gy ., then (i) P (1) = Py(2) and (i1) Ff,(k + 1) = PP, (k + 2)

a

or Fg(k +2) = 3%(k + 1)3%(k +3) fork=1, 2, ... . Hence it follows

from Lemma 3.4 that Fl = F2.

(b) Next let us assume that F = Fd, Fl ] Fd' and F2 = F Then

4
F(k) = oil(k) for k= 0, 1, ... . Hence, 1 - r,(0) = of1 - r, (0], and
1
1 - rF[OJ =] - rF(l). The last two equalities imply that Tp (0) < T (1),
1 1

1
a contradiction.

Consequently every discrete DFR life distribution in the set ¢ is

D,e
an extreme point.

To complete the proof of the theorem, we show that a discrete DFR
life distribution that does not belong to GD,e is not an extreme point in
GD. To show that a discrete DFR life distribution is not an extreme point,
it suffices to prove that the life distribution can be written as a
proper convex combination of two distinct discrete DFR life distributions.
Let F be a discrete DFR life distribution that does not belong to GD,e'
Then (a) there exists a positive integer k, such that rp(k, - 1) > rF(ko) B rF(ko+1).
or (b) 1 > rF(O) > rF(1) = rF(Z) At

(a) Let us assume that there exists a positive integer ko such taat
rF(ko -1) > rp(koj > rF(k° + 1). Then the failure rates sequences

¥F(k) k =k, rF(k) k = ko

rl(k) H , and rz(k) =

- ‘- ]
rp(k° 1) k ko rp(ko +1) k= ko

determine respectively two distinct discrete DFR life distributions Fl and Fz'

Note that F = eFl + (1 - e)Fz, where 6 = rF(ko) 5 rF(ko + 1) . Since 6 is
-1 - rp(ko + 1)

ro(k
in (0, 1) we conclude that F is not an extgous point,

e B i i i i b e ee e .




, (b) Let us assume that 1 > rP(O) > rp(l) = rF(2) = , ,.. . Then the 1

failure rate sequence rP(I) k=0

rs(k) =
rF(k) k>0

determines a discrete DFR life distribution F3. Note that

¥ I'F(O) l‘F(O) - rF(l)
Eeys rpilj i Vi o T Fq- Since [1 - rp(0))/[1 - rp(1)] is in

(0, 1) we conclude that F is not an extreme point.

ooy

Thus, the conclusion of the theorem follows. ||




4. Representation of Discrete DFR Life Distributions as a Mixture of

Extreme Points.

In this section we prove that every discrete DFR life distribution
can be represented as a mixture of the extreme points of the DFR class.
More explicitly, for any discrete DFR life distribution F, we first define
a probability measure WF supported by a subset of the DFR class of extreme
points. We then prove that F is a mixture, with weights determined by WF’
of the extreme points that belong to the support of We. 1

Let F be a discrete DFR life distribution, and let Fl be a discrete

DFR life distribution with a failure rate sequence given by 4

rF(l) k=0
rp (k) = :
1 r.(k) k>0
F
Then
(4.1) s i : rF?I); i :i(?)r-(:;(l) 2 |
TF F :
Thus, in order to define a corresponding probability measure WF' it

suffices to consider distributions in the set G, = {F|F ¢ GD' rp(0) = rF(l)},
and then use Equation (4.1) to determine "F for every discrete DFR life

distribution F.

Let F be in the set Go. To define a probability measure W_ we

F .
(Yy(F, 2), Yp(F, ), .0), |

construct first a vector of random variables Y(F, ‘)
with components assuming values in the set {0, 2, 3, ..., =}, defined on i ‘
some space 2. Then we define for each w ¢ 0 a discrete DFR life distri-
bution 9!(?. W) which belongs to the class of the discrete DFR extreme

points and depends on the parameter Y(F, w). Finally, we prove that

P § P omt oyeen : L
Mg - e
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F(k) = E GY(F’, .)(l) fork=¢,1,... . Thus, the vector Y(F, -) determines
a probabilziy measure W. supported by a subset of G = (GY(F, ayr e Ql,
such that wF{G!(F, u)'Yq(F’ w) = kq, G- 0i; Ly R P{Y;tF, °) = kq, qs1, .
for kl' ..+, kg in the set {0, 2, 3, ..., »}, ands =1, 2, ..., and F is a
mixture, with weights determined by WF’ of the discrete DFR extreme points
which belong to the set GF'

For illustrative purposes we define the probability measure WF for
two special cases: (a) F is an extreme point, and (b) F has only four
distinct failure rates that appear successively.

(a) Let F be an extreme point, let £ be the number (possibly infinite)
of distinct failure rates of F, and let kq, 1 £q < min(2 +# 1, =), be the
number of times (possibly infinite) the qth distinct failure rate of F
appears as a failure rate of F. We define Yq(F, *) = kq, 1 £q<min(g +# 1, =),
and Yq(F, ) 0 for » > q 2 £ + i, provided that £ <=, For u € 2 let

Yq(F, v), 1 £q < min(2 + 1, »), denote the number of times

q-1
rF[jzle(F, w) + 1] appears as a failure rate in QK(F,u)' Clearly

F = GY(F _): thus the degenerate probability measure determined by
Y(F, *) and supported by {F} is the desired one.
(b) Let 1 > a(0) > a(2) > a(3) > a(4) > 0, and let
a(0) k=0,1
r(k) =2 {a(k) k=2, 3

a(4) k 24, be the failure rate sequence of

a discrete DFR life distribution F. Let
59y ko6 3 a(0) k=0, 1, 2 a(0) k <4
rl(k) z {a(3) k=2 3, rz(k) = , and '3(k) H

% a(k) k23 a(d) k>4

S Tt Al A 7 A ot P b,
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be the failure rate sequences of the discrete DFR life distributions Hl’

H2' and Hs respectively. Then by repeating twice the construction presen-

ted in the proof of Theorem 3.5, we obtain that

o 3(0) - a(2) a(2) - a3 a(3) - a(4) . a(2) - a(3
(4.2) F Eéﬁ}_:_ETIT'HI i 0555 - ai3; HZ g a%ﬁi - a(d) a%bi - a{S} "3'

We construct the sequence Y(F, -) as follows

a(0) - a(2)
2 ) e
PIY,(F, -3 = §} = {3 _T)_—(Hz)) - 203

a(2) - a(3) . a(3) - u(4§
» a -a(3) a(0) -a ’
1 Yl(F, w) =2, j=2

PIY,(F, ) = 5|V, (F, )} =41 Y(F, ) =3, jue=

1 Y)(Fu)=8,j==,

Y2+q(F, ‘) £0,q = 1i 2, «e. . Forw £ Q, Yq(F, w), q =1, 2, denotes the
q-
number of times rp [jzle (F, w) + 1] appears as a failure rate in G.Y_(F,w)‘

neer®e, 5,e00,00 b EEE B 0 ™

'6(4’ W Hy. From Equation (4.2) it follows that F(k) = E G!(p,m)(k)

for k=0, 1, e Thus the probability measure determined by Y(F, -)
and supported by the set of extreme points {Hl' H,, "3) is the desired one.

R S b SR e p— - - B 1 MRS €, A I 1 A TN VTR T e Y TR AL I S P e AR S

T

BR W SR

S R S




11

Before constructing the vector Y(F, -), we define two quantities and

prove 2 lemma needed for the construction. Let F be a discrete DFR life
b { * distribution such that 1 > rF(O) = rF(l) > rF(Z) > rF(S). We denote by
m(F) the min{k|k = 2, 3, ..., rp(k) = rp(k + 1)}, and by Z(F, -) a random
variable which assumes values in the set {2, 3, ..., m(F)} with respective

-1
rp(0) - rp(q) i i re(3) - Tp(j + 1)
probabilities equal to rp(Oj“- rp(q 1y rp(O) - rF(j o for

j=2

2 s g<min[m(F) + 1, »]. Next we justify our claim that Z(F, *) is a
random variable.
Lemma 4.1. Let F be a discrete DFR life distribution such that
rF(O) = rF(l) > rp(2) > rF(S). Then (a) m(F) < » implies that
m(F) ®
f P{Z(F, w) = q} = 1, and (b) m(F) = = implies that z P{Z(F, w) = q} s 1.
o Proof. Let 3 < m(F) < =, and let ' ke f

rp(k) k s m(F) - 2

rl(k)

rp(k + 1)k 2m(F) -1, i

be the failure rate sequence of a discrete DFR life disfribution F Then

"(F) m(F) ¥
F m(Fl) = m(F) - 1, and P{Z(Pl, w) =ql = f P{Z(F, w) = q}. Thus, i

=2 q=2

‘ part (a) of the lemma “vciivws by induction on m(F). Let m(F) = », let j be

a positive integer in the set (3, 4, ...}, and let
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12
rF(k) k 3]

rz(k) S rp(j) k=3j+1
rp(k -1 k>j+1

be the failure rate sequence of a discrete DFR life distribution Fz. Then

i m(Fz)

j = m(F)), and ) P{Z(F, w) = a} s | “ P{Z(F,, v) = q}). Thus, from part
q=2 q=2

(a) of the lemma we obtain that i P{Z(F, w) =g} <1 for j = 3,4, ... .

q=2
Consequently part (b) of the lemma follows. ||

We start to construct Y(F, *) by deriving Yl(F, *). Let F be a discrete
DFR life distribution which does not belong to the class of the DFR

extreme points such that rp(0) = rp(1). Let §, # min{klk = 2, 3 ..., rp(k-1) >

rp(k) > rF(k + 1)}, and let rl(k) rF(j1 +k-2),k=0,1, ..., be the

FEE S M s 5 D

failure rate sequence of a discrete DFR life distribution Fl. We define

L TNV

Y,(F, -) to have the same distribution as Z(F,, ). g
We proceed to define Y,(F, ), Y5(F, ), ... . If Y (F, v) = =, then we H
define Yq#l(F’ s) 80, for s 1,2, .4 For Yl(F, w) < =, let

rl[Yl(F, w) + 1], rI[YI(F’ w) + 1], rl[Yl(B, w) + 2], ;.. be respectively
the failure rates of a discrete DFR life distribution Fyl(F' 3" Then

Y, (F, ')IYI(P, ¢), and ry(k, &), k=0, 1, ..., are defined in the same way
that we defined YI(P, -), and rl(k). k=0,1, ..., where F is replaced

by Assume that the joint distribution of (YI(F, ) s Yd(F, "),

Fy,(F, o)
d=2,3, ..., is well defined, and that Yq(F, -)|Y1(F, ) PR Yq_l(F, w)®
q=2, ..., d, and Yq(F, ”'Yq-l(F' w) have the same distribution. Then

we define Ydtl(P’ <) in the same way that we defined Yz(F. <}, where

YI(F' uw) and r, are replaced by Yd(F. «) and Ty respectively.

Next we define for each w ¢ 1 a discrete DFR life distribution

GY(F w) which belongs to GD e’ Let F be a discrete 1life distribution which

LD R O T
5 b { i, S "N A
A oA VS e & &

P, WY
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does not belong to the class of the DFR extreme points such that rF(O) = rF(l).

i ! 5%

Let j1 E min{klk "2, 3, ..., rF(k -1) > rF(k) > rF(k + 1)}. Then for every

n e, rF(O), S - 1), are the first j1 failure rates of G!(F, @)

r00y
For w € Q, Yl(F, w) represents the number of times the failure rate
rF(j2 - 2), which is equal to rp(j1 - 1), appears in GYI(F, L 1f

Yl(F, w) = o, then the construction of GY(F 4) is completed. Next let

Yl(F, ©w) < =; to determine the failure rates of QX(F, w) for k = j1 + Yl(F, w) -1,

j1 + YI(F’ w), =4k we repeat the construction, but replace F by FYI(F, W)’

We continue to construct the discrete DFR life distribution GY(F o
2\N

recursively; in the (k + I)Eb-step, we repeat the original construction,

but replace F by FYk(F, 9"

Let F be a discrete DFR life distribution if 30. To prove that
F(k) = E q!(F. ,)(k) fo? k=20,1, ..., we need the following:

Lemma 4.2. Let F be a discrete DFR life distribution such that
rF(O) = rp(l) > rF(Z) > rF(S), let X be a random variable, assuming {
values in the set {2, 3, ...}, and let y(F, X, k) = rp(k + 1)PX 2 k + 1} -
rF(k + 2)P{X =k + 1} - rF(U)PDf. 2k+2)fork=0,1, ... . Then for

k=0,1, ..., [F, Z(F, *), k] = 0. rF(k) k=0,1

: Proof. Let 3 < m(F), and let rl(k)
L g rF(k +1) k»>1

be the failure rate sequence of a discrete DFR life distribution Fl. Then

(a)-n(Fl) +1=m(F), (b) rpl(k) = rp(k +1) for k=2, 3, ..., and

rP(OJ - rp(S)
Tp - Tp

rF(O) - rF(S)
Thus ¢[F, Z(F, ), k + 1] = W*[Fl, Z(Fl. ), k] fork=0,1, ... .

(c) P(Z(Fl, w) = k} = * P{2(F, v) =k + 1) for k=2,3, ... .

The conclusion of the lemma follows by induction on k. ||
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We prove now that F(k) = E Gy(F m)(k}tdrl<= 0,1,... and F in Go.
2\

Theorem 4.3. Let F be a discrete DFR life distribution that does not

belong to the class of the discrete DFR extreme points such that

rF(O) = rF(l). Then for every nonnegative integer k,
(4.3) F(k) = E EY(F ,)(k)

Proof. Without loss of generality, assume that rF(l) > rF(Z) > rF(s).
Clearly Equation (4.3) holds for k = 0, 1, and 2. Assume that Equation

(4.3) holds for all nonnegative integers which are smaller than a fixed

AR
oy o

} .
; 4 k + 1. We prove that Equation (4.3) holds for k + 1.
B
i Denote by r.(, q), q = 0, 1, ..., the qth failure rate of 9!(F, -
g By our assumption and by construction of G, .ys We obtain that
! g e 2
¢ IY,(F,w) skl * EC 1 [1- 7o, @Y, (F, )} =
¥ k-Y, (F0)
k)
: Y (F, @) S k][l - rp(Y,(F,0) + 1}] © 1 [1-r,{q+Y,(F, 0)}].

q=1
Thus, for k = 2, 3, ..., '

SR TR SR T e e

4.8 Gy 00 = [ - @1y (R 0) 2k e 1)

k q k-q
LP (P ) = q}i1 - 2101 - 2pla + DIH L - 7yla < D).

-2

By our assumption, and Equation (4.4), we obtain that

kel

EGy(x, (" * 1) = F(k + 1) + [1 - 5 (O)9IF, Y, (F, *), K].

The conclusion of the theorem follows from Lemss 4.2. ||

Next we state and prove the main result of this section.
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Theorem 4.4. Let F be a discrete DFR life distribution. Then we can
construct a probability measure WP’ supported by a subset of the discrete
DFR class of extreme points, such that F is a mixture, with weights
determined by WF’ of the DFR extreme points in the support of WF'

Proof. Clearly the result holds for every discrete DFR life distribution

that belongs to GD o Let F be a discrete DFR life distribution which
]

" does not belong to GD e’ and let Fl be as in Equation (4.1). Then we

rp(0) - (1)

define W as follows: W_{F} = ) B and ¥ {GY(FI, Lj)|Yq ) =

kq, TN B PURAR :;}--l—;--;—-((?)ywF {GY(FI' )IY (Fy, W) -k SR T RO
for kl, el ks in the set {2, 3, ..., »}, ands =1, 2, ... . From
Theorem 4.3 and Equation (4.1) it follows that WF is a probability measure
with a support in the subset {F }u {GY(F 9 L 2} of DFR extreme points
such that F is a mixture, with weights detormined by WF' of the extre-e
points in the support of W. ||

Finally we note that, as is frequently the case, the representation

is not unique. To show that the representation is not unique, let

alu) k=0
r(k) =
a(l) k21,
rl(k) = a(l), k=0, 1,-..., and let
af0) + 1 TR
rz(k) =
; a(l) k21,

be the {iilure rate sequ2nces of the discrete

vk

I e 5 mn I 4 b o
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L:f- DFR life distributions F, Pl, and Fz respectively, where 1 > a(0) > a(1) > 0.

Then

1 - a(0) 2[a(0) - a(l)
(4.5) i a(0) + 1 - 2a F1 * a0 + 1 - 2a F2'

Thus F has two representations, one based on Equation (4.1), and the other

on Equation 4.5.
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